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ABSTRACT
Hearthstone [3] is a 1-vs-1 digital card game that is played com-
petitively in a variety of formats. In a tournament, each player
preconstructs several decks and then chooses at each point in the
match what deck they will play, according to the restrictions of a
chosen match format. Such tournaments measure players’ skill and
are exciting for viewers, but can take place in a variety of match
formats which fans claim drastically affect the competitiveness and
viewer engagement [9]. Given that different deck archetypes have
certain expected winrates against other archetypes, an optimal
strategy exists for each player that determines with what probabil-
ity they should pick each action available to them. We developed
software that can solve for optimal strategies under fixed condi-
tions and apply this process to winrate sets to generate metrics
that can be compared across formats. We then used a large dataset
collected from live Hearthstone players to generate metrics that
reflect the competitive deck ecosystem, and used these results to
draw qualitative conclusions about various match formats.

CCS CONCEPTS
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1 INTRODUCTION
In professional Hearthstone tournaments, choosing which deck
to play in the next game is a key strategic component. Since this
decision is independent of gameplay decisions once the game has
started, we can view each game as a probabilistic win/lose outcome
based on the winrate between the two decks being played, and
the relative skill of each player with their respective deck. After
abstracting each game to a randomized outcome, the match can be
modeled as a zero-sum game with a sequence of simultaneous deci-
sions made by both players corresponding to protecting, banning,
or choosing to play certain decks. This is a well studied structure
in game theory known as a finite game tree [5], which indicates
that an optimal strategy exists for each player. Thus, with input
data on the winrates between each deck, and since a finite number
of possible matches could play out, the optimal strategy for each
player at each step of the match can be computed. But even though

such winrate data is widely available through deck tracking ser-
vices such as HSReplay [6], no match solver previously existed to
generate the match tree and compute optimal strategies.

Another gap in game theory for Hearthstone is a comparative
analysis of different match formats. The match format chosen deter-
mines how many decks each player brings, how many decks they
can protect and ban, how many games they need to win, whether a
deck is eliminated when you win or lose with it, and whether the
winner or loser of the previous game must choose the same deck
for the next game. Depending on each of these factors, matches
will tend to last a different number of games, reflect player skill
in different ways, show more or less variety in deck matchups,
and lead to different levels of viewer excitement. When comparing
certain formats, one can intuit how certain qualities will differ, but
this is the first formal research to verify or refute those notions.
Other formats and qualities seem more difficult to reason about a
priori, but could be determined through empirical observation of
professional tournaments, or by simulating and analyzing a large
number of matches, which we have done here.

1.1 Our Approach
We have applied computational game theory to these two problems
by developing HearthNash, a match tree generation and analysis
tool. It takes input parameters for match format settings and deck
matchup winrates, and uses them to generate a directed acyclic
graph structure containing every possible sequence of decisions and
outcomes for a given match. As the structure is created, our system
computes the expectedmatch victory probability and optimal mixed
strategy for each player at every node in the tree. This allows the
system to solve any match and describe optimal strategies given
sufficient knowledge of the initial state.

We are able to address the second problem, comparing different
match formats, by analyzing properties of generated match trees.
Importantly, we were able to run these analyses using matchup win-
rate data from a real meta state in Hearthstone thanks to HSReplay
[6], a free deck tracker for players which doubles as a data aggre-
gate and analysis service by collecting the results of games played
by their users. HSReplay was able to provide us with matchup win-
rate data collected by tracking millions of games by high ranking
Hearthstone players.

1.2 Contributions
We analyzed several metrics of each match format which allowed
us to identify certain differentiating qualities. By measuring the
likelihood of a match spanning a certain number of games, we
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concluded that the match length distribution is quite consistent
within each class of formats (based on number of games required to
win). By measuring the sensitivity of a player’s victory probability
to their skill across all decks, we observed that formats which
requiremore games to win are more reflective of “wide” player skill.
Conversely, we observed that a player’s victory probability is more
sensitive to adjustments in “tall” skill adjustments (skill with a single
deck) for formats which require less games to win. Our analysis on
tall skill sensitivity also indicated that Last Hero Standing formats
are each more sensitive to improvements with a single deck than
their corresponding Conquest counterparts. Finally, we observed
that as the magnitude of the skill adjustment for a single deck
increases, only those formats which allow the most powerful deck
to dominate show an increase in sensitivity.

Our software, HearthNash, also stands on its own as a computa-
tional game theory tool to solve and analyze individual matches in
Hearthstone or other games with a similar match structure. In order
to make it more accessible, we developed an interactive web inter-
face (https://dominic-calkosz.com/HearthNash/web-interface.html)
which allows anyone to test potential match scenarios and out-
comes, and thus to better understand the game theoretical proper-
ties of Hearthstone matches and their assorted formats.

2 RELATEDWORK
Within the area of optimal strategies for Hearthstone matches, we
found 2 prior studies, both of which are public posts on Reddit.com
from the subreddit r/CompetitiveHS (standing for “Competitive
Hearthstone”). In April of 2015, user jmc999 detailed how he calcu-
lated the optimal strategies for a no-bans Conquest best-of-5 format
by brute-forcing a large number of possible strategies at each point
in the match and then picking the best one [8]. It illustrated how
deck matchup winrates lead directly to optimal strategies and vic-
tory probabilities, but was limited to a single format with no bans
or protects. User BryPye was inspired by that post to run his own
Monte Carlo simulation on the same format and deck matchup
winrates, which succeeded in replicating jmc999’s results [7]. They
noted an additional limitation of their work, that “it assumes your
opponent is choosing their deck at random.”

More general match and tournament strategy research has been
conducted and formally published. “Backward induction and com-
mon knowledge of rationality” [1] showed that backwards induc-
tion is valid, meaning it can be used to find the optimal strategy for
each player, assuming rational players. Although this paper focuses
on perfect information games (e.g. chess), it also proves this result
for probabilistic games. This is critical to our research because our
method of generating and solving match trees for optimal strategies
relies heavily on backwards induction.

“Exploring the Hearthstone Deck Space” [2] examines computa-
tional deck building using an evolution strategy. This paper over-
laps with several of the concepts that are core to our research
here, including deck archetype matchups and fine adjustments
in winrate probabilities. The implications of this work related to
balancing Hearthstone algorithmically could potentially integrate
match strategies and victory probabilities as they are computed in
our research.

3 IMPLEMENTATION
HearthNash is implemented in JavaScript, and a mirror of its source
code can be found at https://github.com/Dmcdominic/HearthNash-
Mirror.

3.1 Hearthstone Match Structure
The sequence of decisions and games that are played out in a Hearth-
stone match are determined by the format settings, which are the
rules that the match will adhere to. The flow of a match is visualized
in Figure 1. Some matches begin with a “shield phase”, in which
each player is allowed to protect some number of their own decks
from being banned (in the following ban phase). Players choose
simultaneously which deck(s) to protect, meaning that one player
can not use information about the other’s decision to improve their
own. Many formats do not include a shield phase and instead go
straight to the ban phase. In the ban phase, each player is allowed
to ban some number of their opponent’s decks from being played in
any of the subsequent games. Players make this choice simultane-
ously, and then proceed to the first deck choice phase. Some formats
do not include a ban phase at all, and instead begin with the first
deck choice phase. Before each game, players are allowed to choose
which of their remaining decks they want to play with. Players
once again make this choice simultaneously. This constitutes a deck
choice phase. However, certain additional rules may apply to this
phase. If this is not the first deck choice phase, then the format
settings may specify that the winner and/or loser of the previous
game is required to continue playing with the same deck. Once each
player has chosen their deck, the game is played out, and the first
player to destroy the enemy hero earns 1 win. Following this game,
the format settings may specify that the winning and/or losing
deck be removed from the decks available to the corresponding
player. Then players return to the deck choice phase. The cycle of
deck choice and game phases repeats until one player has earned a
certain number of wins, determined by the format settings, to be
crowned the victor of the match.

Figure 1: The flow of a Hearthstone match.

As an example, the format “Conquest Best-of-3” is defined such
that each player brings 3 decks, skips the shield phase, may ban 1
of their opponent’s decks, and must win 2 games to win the match.
In addition, it specifies that a player’s deck may not be used again
once they have won a game with it, and that players are free to
choose from any of their remaining decks before each game. All
formats used in this research are defined in Table 1.

3.2 How HearthNash Models a Match
To model a single match, HearthNash takes in three parameters.
The first input is the format settings, as described in the previous
section. Second, the meta settings specify the winrate probabilities
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Table 1: Hearthstone Match Format Definitions

Format Protects Bans Games to Win Decks/Player Deck Removed Can Switch Decks

1 Game No Bans 0 0 1 1 N/A N/A
1 Game One Ban 0 1 1 2 N/A N/A
Conquest BO3 0 1 2 3 Winner Both
Conquest BO5 0 1 3 4 Winner Both

Shield Phase Conquest BO3 1 1 2 3 Winner Both
Shield Phase Conquest BO5 1 1 3 4 Winner Both
Conquest No Bans BO3 0 0 2 2 Winner Both
Conquest No Bans BO5 0 0 3 3 Winner Both
Last Hero Standing BO3 0 1 2 3 Loser Loser
Last Hero Standing BO5 0 1 3 4 Loser Loser

Shield Phase Last Hero Standing BO3 1 1 2 3 Loser Loser
Shield Phase Last Hero Standing BO5 1 1 3 4 Loser Loser
Last Hero Standing No Bans BO3 0 0 2 2 Loser Loser
Last Hero Standing No Bans BO5 0 0 3 3 Loser Loser

for all possible deck matchups which could come up based on the
decks that each player brings to the match. These are needed in
order to compute the probability of each possible outcome and to
determine optimal strategies at each decision point. Third, each
player has a predetermined set of decks that they start the match
with. The details of the decks (what cards they contain) are not
necessary, as games are simply represented by a probabilistic out-
come. Decks in each list are simply represented by indices into
the winrate data from the meta settings (although they may also
contain supplemental data for usability such as the name of the
archetype).

The match tree structure generated from this input adheres
closely to the phases described in the previous section. The tree is
made up of nodes, which each include an indexed array of child
nodes corresponding to all possible events that could come next in
the match. A diagram of an example match tree structure for the
format 1 Game 1 Ban is shown in Figure 2. The top of the tree is a
single “match root” node, with a single child node depending on
how the match starts. If there is a shield phase, then it starts with a
protect node. If there is no shield phase but there are bans, it starts
with a ban node. Otherwise, it starts with a deck choice node. The
protect node creates a child for each possible combination of deck
protects that the players could make. For instance, if each player
has 2 decks and they are allowed 1 protect each, then there will be
4 child nodes, each leading to a different version of the following
ban phase where different decks have been protected. A ban phase
node, similarly, will generate a child (deck choice) node for each
possible combination of deck bans that the players could make. A
deck choice node will generate a child (game) node for each possible
combination of decks that the players could choose to play against
each other. A game node will generate two children nodes, one for
each possible winner of the game. Sometimes a child of a game
node will be an outcome node, which dictates that a certain player
is the final victor of the match, and has no children. Otherwise, a
child of a game node is a deck choice node to determine the decks
used in the following game.

Once a node has generated all of its children, it completes its
own generation by computing the optimal strategy for each player
(if this is a decision point, i.e. a protect, ban, or deck choice node),
and the probability of each player winning from this point in the
match (assuming optimal play). The optimal strategy at a decision
point can be computed using a payoff matrix, where the payoff for
each outcome is equivalent to the victory probability calculated at
the corresponding child node. We use the pivot method, which we
implemented according to the description in the textbook Game
Theory [5] [4], to extract the optimal strategy for each player based
on the payoff matrix. This algorithm also conveniently outputs
the expected value when players play optimally, which defines
the victory probability of each player. The victory probabilities
for the match root are trivial as it only has one child. The victory
probabilities for an outcome node (the base case) are simply 1 and
0 for the victorious and losing playing respectively. The victory
probabilities for a game node are also determined using the victory
probabilities of its children, but in this case, the weight of each
child is determined by the probability of either player winning the
match, which simply requires indexing into the winrate matrix for
this particular matchup.

3.3 Data Analysis Pipeline
Our data analysis pipeline consists of three main stages. The first
stage is to convert the raw HSReplay data into usable meta info.
The data was provided to us in two sets, one based on games played
between ranks 20-11, and the other based on games played between
ranks 10-Legend (the latter being the higher-ranked pool of play-
ers). This is according to the original rank system, as the data was
collected between February 27, 2020 and March 5, 2020. The data
included empirical winrates for every archetype matchup that was
recorded, as well as the sample size on that particular matchup. A
large portion of this data includes archetype matchups with very
small (less than 100) samples, which does not give us the desired
winrate accuracy. Part of this first stage is reducing it down to 10
archetypes, such that the minimum number of samples between
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Figure 2: Example diagram of a Hearthstone match tree, for
the 1 Game 1 Ban format.

any two archetypes is maximized. The rest of this stage is concerned
with formatting and saving the meta info to file.

The second stage generates a fixed number of match trees for
each format using the meta info from the first stage. After each tree
is generated, it is also written to file so that it can later be analyzed
for several different metrics. Every tree corresponds to a pair of
randomly chosen subsets of the archetypes available, which are
then used as each player’s starting decks for the match. Importantly,
the archetype set pairs chosen for the match trees of a given format
are exactly the same pairs used for the other formats which require
the same number of decks for each player. For example, Conquest
best-of-3 and Last Hero Standing best-of-3 both require players
to bring 3 decks each, so every match tree generated for one of
these formats will correspond to a match tree in the other format
with precisely the same deck inputs. This gives us more confidence
when making comparisons between formats in the analysis stage.
In addition, we use a pseudorandom number generator so that all
tests can be replicated.

Finally, the third stage conducts analyses of each match tree that
has been generated, and outputs the results into .csv files alongside
corresponding .json metadata files. The details of each metric and
how it is analyzed are described below.

3.4 Details of Metric Analyses
The first metric is distribution of match length, which is the number
of games that are played before one player wins. This is computed
for each tree by taking a weighted average of the game-depth of all
leaves (outcome nodes). The weight for each node is determined
by assuming that players play optimally and then evaluating the
probability that the node is reached. This can be recursively com-
puted according to the probability that the parent node is reached,
multiplied by how likely the node itself will be chosen based on
the players’ optimal strategies (if it is a decision point), or based on
the winrate probability if it is a game node.

The second and third metrics both aim to measure how respon-
sive each format is to adjustments in player skill. In our match
model, player skill is reflected by their matchup winrates. So to
test skill sensitivity, we make small adjustments to the winrates
of a given match tree, generate the corresponding adjusted tree,
and then compare the victory probabilities of the new tree with the
original.

The difference between these two metrics pertains to which
winrates are adjusted. The second metric, called wide skill sensi-
tivity, tests how responsive a format is to increasing the winrates
of all decks for one player. For each match tree, the system makes
a duplicate of the winrate matrix, boosts the winrates for player
0, generates a new match tree with the same initial decks for each
player, and records the amount by which player 0’s win probability
increased (if at all). It then repeats this for player 1 as well, and for
progressively larger increments in skill. The third metric, called tall
skill sensitivity, tests how responsive a format is to increasing the
winrates of a single deck for one player. The process is identical to
wide skill sensitivity, except that a new tree is generated for each
individual deck, such that only the winrates for that deck of that
player are boosted.

4 RESULTS AND DISCUSSION
4.1 Match Length Distribution
From our first metric, we observed that match length distribution is
quite consistent within each class of formats, based on the number
of games required to win (best-of-1, best-of-3, and best-of-5). This
is visualized in Figure 3. Best-of-1 is the obvious case, where the
formats strictly allow a single game to determine the victor. Our
results for best-of-3 indicate that it is slightly more common for a
match to go to a third game (meaning each player won one of the
first two games), for all six BO3 formats that we analyzed. Best-of-5
is similarly consistent, showing less than 3% difference between
any two formats for a certain match length. From these results, it is
clear that the probability of a sweep (one player winning the first 3
games) is significantly lower than going to 4 or 5 games total. This
may be unsurprising, though, considering that out of the 8 possible
outcomes on the first 3 games, only 2 of them lead to a sweep.
This suggests 2/8 = 25% as an intuitive estimate for the number of
sweeps (assuming a relatively even player skill distribution), which
lines up well with our results.

Figure 3: Results from analysis ofmatch length distribution.
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4.2 Wide Skill Sensitivity
Our second metric, wide skill sensitivity, yielded some interesting
results regarding how responsive each format is to improvements
in a player’s skill across all of their decks. Figure 4 shows that, as
with match length distribution, each class of formats (based on
number of games to win) is quite consistent. Between these classes,
though, it is interesting to observe that the more games required to
win, the more sensitive a format is to skill adjustments. This seems
fairly intuitive, because when a single game is played, changes in
victory probability should be 1-to-1 with changes in the winrate
probability of that single game, and the more skilled player still has
a reasonable chance of losing. But as the number of games required
to win approaches infinity, the likelihood of the more skilled player
being victorious will approach 100%.

Figure 4: Results from analysis of wide skill sensitivity.

4.3 Tall Skill Sensitivity
Our third metric, tall skill sensitivity, yielded a much greater variety
of results across the different formats, seen in Figure 5. There are
several interesting observations to be made here. For one, best-
of-3 formats (lighter colors) are each more sensitive to tall skill
improvements than their best-of-5 counterparts (darker colors).
This at first seemed surprising to us when compared with the wide
skill sensitivity, which shows the opposite relationship. However,
it can be explained by the fact that formats with fewer games lead
to greater impact of each individual game, which means greater
impact of a player’s skill with each individual deck.

Another observation is that Last Hero Standing formats (dotted)
are all more sensitive to tall skill improvements than their Con-
quest counterparts (dashed). The core difference between these two
formats is that after each game in Last Hero Standing, the loser’s
deck is removed from their options, as opposed to Conquest, in
which the winner’s deck is removed. This is relevant to tall skill
sensitivity because it means that a single powerful deck is able to
win several games for you in Last Hero Standing.

Figure 6 shows the same skill sensitivity (tall) results as in Fig-
ure 5, but instead plotted by the increase in victory probability
over the change in deck winrate. This way, the skill sensitivity is
normalized to show what proportion of the winrate improvement
translates to victory probability improvement. This illuminates
another interesting observation: as the magnitude of the skill ad-
justment for a single deck increases, most of the formats have a
decrease in tall skill sensitivity ratio, but there are 4 formats that

Figure 5: Results from analysis of tall skill sensitivity. Con-
quest formats are plotted with long dashes. Last Hero Stand-
ing formats are plotted with dots. Shield phase formats are
in blue, no-ban formats are in green, and standard (single-
ban) formats are in red. BO5 formats use darker colors,
while BO3 formats use lighter colors. 1 game formats are
plotted in purple with solid lines.

actually show an increase in this sensitivity. These particular for-
mats are Last Hero Standing No Bans (both BO3 and BO5), and
Shield Phase Last Hero Standing (both BO3 and BO5). What makes
these 4 formats unique is that a single powerful deck can dominate
the match, and your opponent is unable to ban the most powerful
deck. As the change in deck winrate increases, it also increases
the expected number of games which you will play with that deck,
leading to a multiplicative effect. The only Last Hero Standing for-
mats which do not increase like this are the default formats, with
a single ban and no deck protection. Since each player is able to
ban the other player’s most powerful deck, an exceedingly large
increase in winrate for a particular deck is increasingly more likely
to be banned and nullified by the opponent.

Figure 6: Results from analysis of tall skill sensitivity, plot-
ted by increase in victory probability over the change in deck
winrate.

5 EVALUATION
5.1 Sample Size and Variance
In order to ensure that enough samples were taken for our met-
rics, we ran the same analyses over several different samples sizes.
Figure 7 shows how the results of a particular analysis converge
from trials with a single sample to trials with 50 samples. We ulti-
mately decided on a sample size of 30 to use for our final analysis,
which is covered in the Results and Discussion section, because it
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converged to a point of less than 5% deviation from the mean, but
keeps computation time to a manageable level.

Figure 7: Results from several trials of skill sensitivity (tall)
across different sample sizes. Specifically plots the change
in match victory probability after a 4% increase in winrate
probability for Shield Phase Conquest BO5. Data used for
Results and Discussion is based on 30 samples.

5.2 Branching Factor and Memoization
At each phase in the match, there are several possible events that
could occur (based on the players’ choices, or the winner of a
game). This means that each node can have 2 or more children, and
each of its children can have 2 or more children, etc. This leads to
exponential blowup of the size of the tree structure, especially for
the larger formats such as shield phase best-of-5 matches which
have a node-depth of up to 14. However, not every node is unique.
For most match states, there are several different sequences of
events which can lead to that particular state. For example, there
may be hundreds of possible ways for the two players to end up in
a final game which comes down to two particular decks, and so it
is unnecessary to have a separate node object to represent every
instance of that state.

We apply memoization to the match tree generation by wrapping
each node constructor with a function that first checks a hashtable
of all the previously generated nodes of that type. On a hit, we
simply return the found node. On a miss, we generate the new
node as normal, then place it in the hashmap before returning it
to the caller. We also apply memoization to each of the metrics in
the analysis pipeline. For example, the match length distribution
of a particular node need not be computed more than once. As
HearthNash traverses the tree, it adds a property to each node
indicating that it has already been computed, along with the value
itself. Then before each new node is analyzed, the system first
checks if the property exists, and skips the computation if so.

6 FUTUREWORK
6.1 Other Possible Uses and Extensions of

HearthNash
There are several potential uses for HearthNash beyond what we
have explored here. The most straightforward extension would be
to implement additional metrics for analyzing match trees and their
respective formats. Optimal deck practice strategies is a natural
followup to our analysis of both wide and tall skill sensitivity. A
player might wonder, given a certain set of decks that they intend to
bring to a match, which deck they should prioritize practicing and
improving their winrates with. Another metric that could be ana-
lyzed is matchup disparity distribution: Are most games expected
to be even matchups (near 50% winrate) or blowouts (one deck is
strongly favored over the other). This factor might be important
in terms of preventing luck-based outcomes (in which the match
has a huge swing in victory probabilities based on a single unlucky
deck ban or pick). It also has significance for viewers who find even
matchups more exciting than games which may seem decided from
the outset.

One might also consider the phase that comes before a match
even begins, in which players decide which decks they will bring to
thematch. This is a simultaneous decision, meaning that each player
makes their selection without any knowledge of their opponent’s
decision. Solving for this deck selection phase would enable users
of HearthNash to not only play by an optimal strategy throughout
the match itself, but also to select optimal decks from the beginning.

Extending HearthNash to solve the deck selection phase would
also enable us to analyze a new metric for archetype diversity. One
might wonder if, in a given meta state, certain formats lead to only
3 or 4 different archetypes being used predominantly (over many
matches), whereas other formats lead to a variety of 6 or more
archetypes appearing regularly. A similar metric could be defined
according to matchup diversity, which is interested in how many
different archetype matchups are likely to get played out over many
matches. This is an important factor in viewer excitement, because
fans watching weeks of Hearthstone tournaments are more likely
to stay engaged by an assortment of archetypes, rather than by
watching the same matchups play out repeatedly.

6.2 Empirical Research
A natural question that arises from the theoretical results deter-
mined by our research here is whether or not professional players
tend to play optimally. This could be studied through empirical
observation of professional tournaments. If players tend to play
sub-optimally in certain formats, it would indicate significant room
for strategic improvement at even the highest level of play.

One might also wonder how engaging each format is to view-
ers on game streaming platforms such as Twitch and YouTube.
By comparing total viewing hours or viewer retention for tourna-
ments with different match formats, we might observe which ones
are more popular for entertainment. This would also allow for a
multi-dimensional analysis that could illuminate which character-
istics of match formats (such as matchup disparity distribution or
archetype/matchup diversity) actually lead to better viewer engage-
ment.
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6.3 Beyond Hearthstone
Finally, the match structure that HearthNash uses may be applicable
to more than just Hearthstone. Games such asMagic: The Gathering
use similar match formats, especially if the deck selection phase is
integrated. This could illuminate interesting results about Magic as
it has about Hearthstone. It would also allow for mathematical and
objective comparisons between these two games which have not
been possible before. Even games outside of the card game genre
could utilize the same structure for determining optimal strategies,
including fantasy sports drafting.

HearthNash may also be applicable to drafting strategies in mul-
tiplayer online battle arenas (MOBAs) and other games with similar
pre-gameplay draft phases. For example, the Captains Mode in
DotA 2 follows a predetermined sequence of picks and bans for
each team as they assemble 5 heroes each, from a pool of over
100 possible heroes. By modifying HearthNash to account for al-
lied hero synergies/anti-synergies and opposing hero matchups,
optimal strategies for the draft process could be solved. The prede-
termined sequence for this mode, however, has undergone several
adjustments over the years. The modified version of HearthNash
would also enable a game theoretical analysis of each variation,
indicating key differences and ultimately recommending a certain
optimized sequence.

7 CONCLUSION
Hearthstone match formats and their relative strengths and weak-
nesses have been the subject of much discussion among fans and
professional players alike. Until now, this discussion has been lim-
ited to anecdotal observation and small, isolated simulations. With
HearthNash, we have been able to make direct comparisons be-
tween match formats using computational game theory and real
world data on winrates at high ranks. We determined that match
length distribution and wide skill sensitivity are both consistent
within each class of formats. We also determined that tall skill
sensitivity is stronger in each best-of-3 format than its best-of-5
counterpart, and stronger in each Last Hero Standing format than its
Conquest counterpart. Finally, we observed that as the magnitude of
the skill adjustment for a single deck increases, only those formats
which allow the most powerful deck to dominate show an increase
in sensitivity. HearthNash opens the door to further research, in-
cluding optimal strategies and implications of the pre-match deck
selection phase, as well as extension beyond Hearthstone to games
such as Magic: The Gathering, fantasy sports drafting, and MOBAs.
We hope that this research strengthens the broader understanding
of match formats and their optimal strategies, and enables other
research on game theory within digital games.
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